Source code for openqemist.tests.problem_decomposition.dmet.test_dmet_oneshot_loop

#   Copyright 2019 1QBit
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

"""
Test the functions in the main loop of DMET calculation
"""

import unittest
from pyscf import gto, scf
import numpy as np

from openqemist.problem_decomposition.dmet._helpers.dmet_orbitals import dmet_orbitals
from openqemist.problem_decomposition.dmet._helpers.dmet_onerdm import dmet_low_rdm, dmet_fragment_rdm
from openqemist.problem_decomposition.dmet._helpers.dmet_onerdm import dmet_low_rdm, dmet_fragment_rdm
from openqemist.problem_decomposition.dmet._helpers.dmet_bath import dmet_fragment_bath
from openqemist.problem_decomposition.dmet._helpers.dmet_scf_guess import dmet_fragment_guess
from openqemist.problem_decomposition.dmet._helpers.dmet_scf import dmet_fragment_scf
from openqemist.problem_decomposition.electron_localization import iao_localization

[docs]def get_file_path_stub(): """ Gets the path of the test files from anywhere in the test tree." The direcory structure should be $SOMETHING/openqemist/openqemist/tests/$SOMETHINGELSE so we trim after "tests", then add the path to the results files so we can run the tests from anywhere in the tree.""" import os cwd = os.getcwd() tests_root = cwd[0:cwd.find("tests") + 5] return tests_root + "/problem_decomposition/dmet/"
[docs]class TestDMETloop(unittest.TestCase): """ Generate the localized orbitals employing IAOs """
[docs] def test_dmet_functions(self): # Initialize Molecule object with PySCF and input mol = gto.Mole() mol.atom = """ C 0.94764 -0.02227 0.05901 H 0.58322 0.35937 -0.89984 H 0.54862 0.61702 0.85300 H 0.54780 -1.03196 0.19694 C 2.46782 -0.03097 0.07887 H 2.83564 0.98716 -0.09384 H 2.83464 -0.65291 -0.74596 C 3.00694 -0.55965 1.40773 H 2.63295 -1.57673 1.57731 H 2.63329 0.06314 2.22967 C 4.53625 -0.56666 1.42449 H 4.91031 0.45032 1.25453 H 4.90978 -1.19011 0.60302 C 5.07544 -1.09527 2.75473 H 4.70164 -2.11240 2.92450 H 4.70170 -0.47206 3.57629 C 6.60476 -1.10212 2.77147 H 6.97868 -0.08532 2.60009 H 6.97839 -1.72629 1.95057 C 7.14410 -1.62861 4.10112 H 6.77776 -2.64712 4.27473 H 6.77598 -1.00636 4.92513 C 8.66428 -1.63508 4.12154 H 9.06449 -2.27473 3.32841 H 9.02896 -2.01514 5.08095 H 9.06273 -0.62500 3.98256""" mol.basis = "3-21g" mol.charge = 0 mol.spin = 0 mol.build(verbose=0) mf = scf.RHF(mol) mf.scf() dmet_orbs = dmet_orbitals(mol, mf, range(mol.nao_nr()), iao_localization) # Test the construction of one particle RDM from low-level calculation onerdm_low = dmet_low_rdm(dmet_orbs.active_fock, dmet_orbs.number_active_electrons) onerdm_low_ref = np.loadtxt(get_file_path_stub() + 'test_dmet_oneshot_loop_low_rdm.txt') for index, value_ref in np.ndenumerate(onerdm_low_ref): self.assertAlmostEqual(value_ref, onerdm_low[index], msg='Low-level RMD error at index ' + str(index), delta=1e-6) # Test the construction of bath orbitals t_list = [15] temp_list = [0,15] chemical_potential = 0.0 bath_orb, e_occupied = dmet_fragment_bath(dmet_orbs.mol_full, t_list, temp_list, onerdm_low) # Test the construction of one particle RDM for the fragment norb_high, nelec_high, onerdm_high = dmet_fragment_rdm(t_list, bath_orb, e_occupied, dmet_orbs.number_active_electrons) self.assertEqual(norb_high, 23, "The number of orbitals for a fragment does not agree") self.assertEqual(nelec_high, 16, "The number of electrons for a fragment does not agree") onerdm_high_ref = np.loadtxt(get_file_path_stub() + 'test_dmet_oneshot_loop_core_rdm.txt') for index, value_ref in np.ndenumerate(onerdm_high_ref): self.assertAlmostEqual(value_ref, onerdm_high[index], msg='One RDM for fragment error at index ' + str(index), delta=1e-6) # Test the construction of the Hamiltonian for the fragment one_ele, fock, two_ele = dmet_orbs.dmet_fragment_hamiltonian(bath_orb, norb_high, onerdm_high) # Test the construction of the guess orbitals for fragment SCF calculation guess_orbitals = dmet_fragment_guess(t_list, bath_orb, chemical_potential, norb_high, nelec_high, dmet_orbs.active_fock) # Test the fock matrix in the SCF calculation for a fragment mf_fragments, fock_frag_copy, mol = dmet_fragment_scf(t_list, two_ele, fock, nelec_high, norb_high, guess_orbitals, chemical_potential)
# Test the energy calculation and construction of the one-particle RDM from the CC calculation for a fragment #fragment_energy, onerdm_frag, _, _ = dmet_fragment_cc_classical(mf_fragments, fock_frag_copy, t_list, one_ele, two_ele, fock) #self.assertAlmostEqual(fragment_energy, -82.70210049368914, msg="The DMET energy does no agree", delta=1e-6) if __name__ == "__main__": unittest.main()